Εμφανιζόμενη ανάρτηση

Schools of thought

Ancient   Western   Medieval   Renaissance   Early modern   Modern   Contemporary Ancient Chinese Agriculturalism Con...

Αναζήτηση αυτού του ιστολογίου

Τρίτη 29 Δεκεμβρίου 2015

Selection of meteorological parameters affecting rainfall estimation using neuro-fuzzy computing methodology

Publication date: 1 May 2016
Source:Atmospheric Research, Volume 171
Author(s): Roslan Hashim, Chandrabhushan Roy, Shervin Motamedi, Shahaboddin Shamshirband, Dalibor Petković, Milan Gocic, Siew Cheng Lee
Rainfall is a complex atmospheric process that varies over time and space. Researchers have used various empirical and numerical methods to enhance estimation of rainfall intensity. We developed a novel prediction model in this study, with the emphasis on accuracy to identify the most significant meteorological parameters having effect on rainfall. For this, we used five input parameters: wet day frequency (dwet), vapor pressure (e̅a), and maximum and minimum air temperatures (Tmax and Tmin) as well as cloud cover (cc). The data were obtained from the Indian Meteorological Department for the Patna city, Bihar, India. Further, a type of soft-computing method, known as the adaptive-neuro-fuzzy inference system (ANFIS), was applied to the available data. In this respect, the observation data from 1901 to 2000 were employed for testing, validating, and estimating monthly rainfall via the simulated model. In addition, the ANFIS process for variable selection was implemented to detect the predominant variables affecting the rainfall prediction. Finally, the performance of the model was compared to other soft-computing approaches, including the artificial neural network (ANN), support vector machine (SVM), extreme learning machine (ELM), and genetic programming (GP). The results revealed that ANN, ELM, ANFIS, SVM, and GP had R2 of 0.9531, 0.9572, 0.9764, 0.9525, and 0.9526, respectively. Therefore, we conclude that the ANFIS is the best method among all to predict monthly rainfall. Moreover, dwet was found to be the most influential parameter for rainfall prediction, and the best predictor of accuracy. This study also identified sets of two and three meteorological parameters that show the best predictions.

Graphical abstract

image


from #Ἀθηνᾶ via ola Kala on Inoreader http://ift.tt/1QTShjE
via IFTTT

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου


Bookmark and Share
THIRD PILLAR - Portal για την Φιλοσοφία

ΦΥΛΑΚΕΣ ΓΡΗΓΟΡΕΙΤΕ !

ΦΥΛΑΚΕΣ ΓΡΗΓΟΡΕΙΤΕ !

Σοφία

Απαντάται για πρώτη φορά στην Ιλιάδα (0-412) :
''...που με την ορμηνία της Αθηνάς κατέχει καλά την τέχνη του όλη...''
..
Η αρχική λοιπόν σημασία της λέξης δηλώνει την ΓΝΩΣΗ και την τέλεια ΚΑΤΟΧΗ οποιασδήποτε τέχνης.
..
Κατά τον Ησύχιο σήμαινε την τέχνη των μουσικών
και των ποιητών.
Αργότερα,διευρύνθηκε η σημασία της και δήλωνε :
την βαθύτερη κατανόηση των πραγμάτων και
την υψηλού επιπέδου ικανότητα αντιμετώπισης και διευθέτησης των προβλημάτων της ζωής.
..
Δεν είναι προ'ι'όν μάθησης αλλά γνώση πηγαία που αναβρύζει από την πνευματικότητα του κατόχου της.
"ΣΟΦΟΣ Ο ΠΟΛΛΑ ΕΙΔΩΣ" λέει ο Πίνδαρος
..